Man-in-the-Middle TCP Recovery

Ken Birman
Cornell University

Robert Surton
Cornell University

Tudor Marian
Cornell University

Robert Broberg
Cisco Systems

Robbert van Renesse
Cornell University

Abstract

When an application connects with a remote peer us-
ing TCP, its network stack encapsulates the state of that
connection. As a consequence, even if the application is
capable of recovering its own state after failure (for ex-
ample, by restarting at a backup location), the peer may
experience a disruption of connectivity due to the loss of
the network stack’s state. We present RTCP, a new tool
that enables fault-tolerant applications to recover con-
nections in a manner hidden from their peers, without
changes to the network stack, the operating system, or
the remote endpoints. RTCP functions as a middle-man
on the network, filtering packets in order to glean the in-
ternal state of the network stacks and manipulating them
in a manner that masks failures and restarts. Unlike prior
work on TCP recovery, RTCP is remarkably simple: it
maintains only 32 bytes of state per connection, buffers
nothing, does not assume determinism in the network
stack, and has no notion of time. If the RTCP filter itself
fails, once restarted it can to recover its state from the
endpoints, even if the protected endpoint crashes simul-
taneously. We present the RTCP architecture and eval-
uate its impact on throughput and latency, comparing a
protected TCP connection with an unprotected TCP con-
nection that experiences no failures, benchmarking CPU
and packet filtering overheads, and measuring scalability
and speed of recovery when many protected connections
are active.

1 Introduction

Fault-tolerant applications replicate their state so that
even if one replica crashes, some other replica can trans-
parently take over on its behalf. However, if an applica-
tion connects with a remote peer using TCP, one critical
part of the application is inaccessible, namely the con-
nection state. Network stacks typically live within the
kernel behind a socket interface, and the associated state
is protected. As a result, even if the application recovers
to its exact state before the crash, its connections will
break and its remote peers will have to cope with “Con-
nection reset by peer” errors.

Our paper reports on RTCP, a network service pro-
viding low-cost, transparent connection recovery, which

we created as part of a joint project with Cisco Systems
to develop a proof-of-concept next-generation backbone
router. The routers used in this effort are designed as
clusters, with large numbers of “line cards” for routing
data-plane packets, and a few “route processors” pro-
viding control-plane functionality. For example, BGP
traditionally runs on route processors, connecting with
remote BGP peers on other routers over TCP. The goal
of our effort was to enable the creation of fault-tolerant
BGP and other routing services that can scale out over
multiple cards to tolerate failures and gain performance
by better utilizing the cluster’s computing resources.
With RTCP, such a BGP implementation can conceal the
failure of the BGP instance currently responsible for a
given remote peering relationship, shifting that role to
some other BGP instance, which takes over the connec-
tion in a seamless, non-disruptive manner. That might
occur because of a software failure, the loss of an entire
line card, or because of a software upgrade or downgrade
to a different version or implementation of BGP.

The importance of a solution such as RTCP reflects
the poor handling of connection loss in many kinds of
long-term peered services. For example, BGP cannot
tolerate connection loss, as discussed in RFC 4724

Usually, when BGP on a router restarts, all the
BGP peers detect that the session went down
and then came up. This “down/up” transi-
tion results in a “routing flap” and causes BGP
route re-computation, generation of BGP rout-
ing updates, and unnecessary churn to the for-
warding tables. It could spread across multi-
ple routing domains. Such routing flaps may
create transient forwarding blackholes and/or
transient forwarding loops. They also con-
sume resources on the control plane of the
routers affected by the flap. As such, they
are detrimental to the overall network perfor-
mance.

That RFC describes a mechanism for “Graceful
Restart”, but that feature is not widely supported in the
Internet and, in any case, is specific to BGP. A modern
router might host many kinds of distributed routing ser-
vices and other applications, and quite a few of these

would potentially need an RTCP-like capability to con-
ceal failures or reconfiguration from remote peers.

There has been significant prior work on TCP con-
nection recovery [9, [7, 8, [L1} 12} |5} 16} 13} [1, 12} [13], but
existing solutions turn out to be too intrusive and costly
for our target setting. For example, many prior solutions
require source-level access to the network stack, involve
changes to the kernel thread-scheduling layer, and insert
some form of data checkpointing or even multicast op-
eration in the critical path between the remote peer and
the local TCP endpoint. A further consideration is that
BGP itself uses TCP in idiosyncratic ways. For exam-
ple, BGP is the motivation for and primary consumer of
TCP’s MDS5 Signatures option. Many TCP implemen-
tations do not support MD5 signatures, including, until
recently, the one in Linux, and the high-end BGP imple-
mentations on which we focus employ custom network
stacks. More broadly, high-end routers often have cus-
tom, or at least customized, operating systems and net-
work stacks.

This motivated us to ask a basic question: can con-
nection availability be achieved without modifying the
operating system or network stack, without making as-
sumptions about their behavior other than those dictated
by the TCP standard, and without modifying the behav-
ior of the remote peer? This problem statement forces
us to focus on the network path over which packets flow
within the router, and to involve the application in its
own protection.

RTCP makes three contributions to the state of the art.
First, it provides applications with explicit control over
TCP acknowledgment. As we will see below, this con-
trol gives the application an opportunity to replicate data
received on a TCP session before that data is acknowl-
edged, eliminating the need for any form of redundancy
within the protected TCP connection itself. Prior work
has employed similar techniques, but by exposing them
to the protected application, it turns out to be possible to
integrate the needed coordination with whatever replica-
tion mechanisms that application may be using. Second,
RTCP is portable, protecting connections without need-
ing access to (or cooperation from) the internal state of
the operating system or network stack, and making no
assumptions beyond conformance with the TCP stan-
dard. Third, RTCP is lightweight, keeping a constant
amount of state per connection that is smaller than the
connection state in the endpoints, and having an excep-
tionally simple implementation. The small, fixed-size
state and simple processing translate into low latencies
and unobtrusive protection.

2 Design

RTCP is designed as a man-in-the-middle network fil-
ter, observing and manipulating the packets transmitted

'A' B

SYN, SEQ 400
SEQ 300, ACK 100

SYN. SEQ 400

\>

\ Y

Figure 1: Reconnection. The TCP standard describes a non-
transparent “recovery” procedure, in which A’s TCP causes
B’s TCP to abort the half-open connection, and then re-
connects from scratch.

on protected connections, and providing a side-channel
by which applications can learn the necessary connec-
tion state so as to recover in a manner completely trans-
parent to remote connected peers, and with no changes
of any kind to the operating system or network stack
on the local or remote hosts. Should RTCP itself fail,
it recovers its state from the endpoints. The main re-
quirement from the protected application is that it use
any a fault-tolerance mechanism (for example, a check-
pointing mechanism) capable of reporting the number of
bytes received and safely stored or processed, and that it
uses a TCP implementation that complies with the pub-
lished standards. Unlike some prior work, RTCP does
not require that the application be deterministic or that it
implement fault-tolerance in any particular manner.

2.1 Reconnection

The TCP standard describes the failure scenario and ap-
proach to recovery that also underlies RTCP:

Assume that two user processes A and B are
communicating with one another when a crash
occurs causing loss of memory to A’s TCP ...
When the TCP is up again, A is likely to start
again from the beginning or from a recovery
point ... the user attempts to re-open the con-
nection. TCP B, in the meantime, thinks the
connection is open.

Non-transparent reconnection, shown in[Figure 1] be-
gins when A’s TCP sends a packet with the SYN flag

and a fresh, random initial sequence number. The re-
sponse A’s TCP expects is an acknowledgment from B’s
TCP that it received the SYN, carried in a packet with
its own SYN flag and the B’s new initial sequence num-
ber. However, because B’s TCP still believes itself to be
connected and synchronized, A’s SYN is not acceptable,
and the response to an unacceptable packet on a synchro-

'A' |RTCP| B

SYN. SEQ 400

_\->

SEQ 300, ACK 100

SYN, SEQ 299. ACK 401

SEQ 401, ACK 300 SEQ 100
,» ACK 300

_\->

\ \ Y

Figure 2: Resynchronization. A man-in-the-middle can
rewrite the response from B’s TCP to meet the expectations
of A’s TCP, resynchronizing the half-open connection without
tearing it down or creating an entirely new connection.

nized connection is an empty packet, bearing the current
sequence number and acknowledgment. A’s TCP, being
unsynchronized but receiving what from its perspective
is an incorrect acknowledgment, uses that information to
craft a RST packet acceptable to B’s TCP—which, upon
receiving it, immediately aborts the old connection. A
new connection can now be established by following the
standard handshake protocol when A’s TCP retransmits
its SYN packet.

2.2 Resynchronization

A man-in-the-middle, such as RTCP, can rewrite pack-
ets to resynchronize A’s TCP without causing B’s TCP
to abort, as shown in The reason the origi-
nal connection aborted in the example was because the
connection was revealed to be half-open when A’s TCP
received a non-SYN packet with the wrong acknowledg-
ment. Rather than letting A’s TCP see that packet, the
illusion of a seamless connection can be maintained by
setting the SYN flag and adjusting the acknowledgment.
A’s TCP can be synchronized to accept the sequence
numbers sent by B’s TCP, despite the fact that B’s TCP
believes itself to still be using the original connection,
by decrementing the sequence number to account for the
extra SYN injected in the stream.

A similar trick is needed for outgoing packets. Re-
call that A’s TCP selected a new sequence number, so
that and subsequent sequence numbers emitted by A’s
TCP will not be acceptable to B’s TCP. To enable com-
munication, the man-in-the-middle must remember the
amount A by which it had to increase the acknowledg-
ment from B’s TCP, add A to the sequence numbers on
future incoming packets originated by B’s TCP, and sub-
tract A from outgoing sequence numbers on packets pro-
duced by A’s TCP. The modified TCP packets require
new checksums, which can be computed from the origi-

'A' |RTCP| B

SYN. SEQ 400

SYN, SEQ 299, ACK 401

SEQ 401, Ack 30

SEQ 100, ACK 300

Figure 3: Optimized resynchronization. RTCP keeps
enough state to eliminate a round trip on recovery, by rewrit-
ing the SYN from A’s TCP into its own response, rather than
waiting for B’s TCP.

nal checksums using the same sort of incremental check-
sum computation employed when routers decrement IP
time-to-live values. The result is to splice the two half-
open connections together in a manner that costs con-
stant time and requires only a few instructions.

RTCP further optimizes the recovery handshake, as
shown in Rather than saving the sequence
number from A’s TCP, and waiting for B’s TCP to pro-
vide its latest acknowledgment and a packet to rewrite,
RTCP saves the acknowledgments it sees from B’s TCP,
so it can immediately rewrite the recovery SYN from
A’s TCP into its own response, thereby saving a round
trip.

A single RTCP filter can handle multiple connections
in parallel, for multiple protected applications. Using a
constant-cost lookup table to access the state associated
with each active connection, RTCP’s actions have fixed
cost regardless of the number of streams being protected.
In our discussion, we consider a particular connection,
referring to the protected application as A and the remote
peer as B; if desired, a second RTCP filter could protect
the remote side, as well. Thus, RTCP functions as a kind
of gateway, mediating between the fault-tolerant appli-
cations within the router or local cluster and their peers
without.

2.3 Retransmission

Once A has re-established the connection, it might be
necessary for A and B to retransmit some data that was
lost when A crashed.

2.3.1 Outgoing

When A calls send, data is buffered in its TCP, but
might not actually be sent on the network until later.
When A crashes, buffered but unsent data is lost; data
that had been sent, but which the network drops, is also
lost. Thus, A needs a mechanism to learn how many

bytes it sent B actually received, and should resume
sending from that point. Because the standard socket
abstraction provides no way to obtain that informa-
tion, RTCP offers a UDP-based side channel whereby A
can communicate directly with the man-in-the-middle.
When A first establishes a new connection with B, it
sends a UDP packet containing an RTCP_TELL com-
mand, which RTCP intercepts, rewrites to contain the
latest acknowledgment from B (covering A’s initial se-
quence number), and then returns, by swapping the
source and destination. A persistently stores the ac-
knowledgment, and, upon recovering, sends another
RTCP_TELL command to learn the most recent one.
Subtracting the latest acknowledgment from the first re-
veals how many bytes B has definitely received. Actu-
ally, it reveals the number of bytes modulo 232 because
sequence numbers can wrap; A can disambiguate by re-
membering how much it believes it has sent, and using
the RTCP_TELL information to determine within a win-
dow of the last four gigabytes how much was success-
fully delivered.

RTCP does not require that A be a deterministic pro-
gram, but it does require a property that we’ll refer to as
output determinism, namely that any bytes actually writ-
ten by A to its endpoint be reproduced in the event that
A fails, recovers, and the acknowledgment from B is for
a smaller sequence number. Suppose, for example, that
A sends 1550 bytes to B, and the last 50 are in a packet
that gets delayed in the network. Now A crashes and
recovers, and the RTCP_TELL command returns 1500,
because B has yet to receive those last 50 bytes. A
race now ensues: the remaining 50 bytes could reach
B, which will consume them, or A’s next transmission
could reach B, in which case the next 50 bytes will be
those produced subsequent to A’s restart. Clearly, those
bytes must be identical. Thus A must be deterministic
only with respect to retransmitting potentially lost por-
tions of its output.

How can A achieve this property? If the applica-
tion is deterministic, A just needs to resume from some
checkpoint state and then accept any incoming bytes be-
yond the saved incoming sequence number. However,
in modern settings, most programs are nondeterminis-
tic: an inescapable consequence of writing code that
may use multiple threads, receive inputs, read clocks,
accept timer interrupts, and have multiple input sockets.
In that case, A should simply checkpoint its output prior
to sending it. In that manner, the restarted A can resume
by completing the interrupted output (if any), and then
continue in a manner that might be very different from
what the prior instance of A would have done.

Notice that this also suggests that the new instance
of A might remain healthy even if the previous instance
crashed while processing the next received segment

from B. Nonetheless, applications using RTCP should
be wary of poison pill situations that, with RTCP in the
picture, could be transformed into infinite restart/crash
loops due to a bug processing the continually pending
input.

2.3.2 Incoming

When A’s TCP receives a packet from B’s TCP, it
buffers the data until A consumes it with a call to recv;
meanwhile, it might acknowledge the data at any time.
If A’s TCP does acknowledges data, but A crashes be-
fore receiving it at the application level and either check-
pointing it or acting on it, it is lost. To avoid that risk,
we make use of the fact that if no acknowledgment had
been sent by A’s TCP, B’s TCP would have continued to
retransmit the packet until successful and the data would
not have been lost. Accordingly, RTCP delays acknowl-
edgments until the application has confirmed that the in-
coming data is safely consumed. In effect, RTCP only
allows A’s TCP to send checkpointed acknowledgments
to B’s TCP.

The RTCP solution, which requires cooperation from
the application, is not the only way of solving the
problem. Some prior work involves replicating incom-
ing packets within a group of agents, so that, in ef-
fect, A’s TCP stack is replicated. We rejected such
an approach because we felt that the needed mecha-
nisms would unnecessarily complicate RTCP, forcing it
to maintain checkpoint state and requiring a mechanism
whereby those replicated endpoint stacks could coordi-
nate timeout-based actions. Any timeouts or retransmis-
sions would be redundant with what A’s TCP already
does, and, because we assume A is fault-tolerant, any
checkpointing would be redundant with what the appli-
cation already does. The only help RTCP requires for
checkpointing acknowledgments is in the form of the
four byte ACK field that the application persists along
with the rest of its state.

Whenever A finishes storing or processing some
of its input, it notifies RTCP by sending an
RTCP_ACKNOWLEDGE command. When RTCP re-
ceives one of these RTCP_ACKNOWLEDGE commands,
it notes the new sequence number that A’s TCP is per-
mitted to acknowledge. Each time A’s TCP transmits a
packet, RTCP rewrites the acknowledgment field using
the current RTCP_ACKNOWLEDGE value. This is a suf-
ficient mechanism to ensure safety, but it could create a
different problem: A’s TCP will believe that it already
acknowledged the data, so it does not need to generate
a new acknowledgment until B sends new data. Unless
B has more data to send immediately, it just will wait
for an acknowledgment that never comes, until it gives
up and retransmits the data, which induces A’s TCP to
acknowledge it again successfully. To avoid such time-

outs, we take one additional step: RTCP also transforms
the RTCP_ACKNOWLEDGE command packet into a fresh
TCP acknowledgment, which it sends to B’s TCP. The
result is that B’s TCP sees an acknowledgment as soon
as the associated data is safely checkpointed.

One might worry that in delaying the TCP acknowl-
edgment RTCP could cause the TCP stack on its remote
peer to misbehave. Fortunately, many TCP stacks al-
ready delay acknowledgments, for an entirely different
reason formalized in RFC 1122. That RFC describes
optimizations that combine multiple acknowledgments
associated with empty packets so that they can be piggy-
backed on some future packet containing outgoing data,
in order to reduce wasted bandwidth.

Thus, RTCP is able to limit connection state to a
small, fixed amount of data, avoid any need to multi-
cast or otherwise replicate incoming data, and (in effect)
achieve a powerful change in the semantics of TCP ac-
knowledgments. TCP is touted as an example of the
end-to-end principle [10], because it implements fea-
tures such as reliability and flow control from end-host
to end-host without network support; however, it ignores
the end-to-end principle at work between application.
RTCP corrects that oversight, and in place of the stan-
dard “received by A’s TCP”, an acknowledgment now
means that the associated data has been “received and
consumed by A (the application)”.

2.4 Masking failure

Because TCP is designed to avoid half-open connec-
tions, if B’s TCP detects that A has failed, it will abort.
A would then recover only to find its peer dead, recalling
the end of one of Shakespeare’s most famous tragedies.
This is a serious issue in RTCP, because one of the fail-
ure modes we need to contend with involves a crash of
the application that might leave the operating system and
TCP stack alive. In such a state, there are two main ways
A’s TCP might reveal A’s demise to B’s TCP: by send-
ing a RST in response to incoming packets, or by inject-
ing FINs to helpfully close A’s connections on its behalf.

2.4.1 Spurious RSTs

If any packets from B’s TCP arrive while A is crashed or
not finished recovering, A’s TCP (or perhaps its old TCP,
if A has migrated), lacking a synchronized connection,
will answer with a RST.

The simplest solution is to drop all outgoing RST
packets. A correct TCP only sends RST in response to
unacceptable packets received for unsynchronized con-
nections; thus, whenever the connection should be syn-
chronized, A’s TCP should be prevented from erro-
neously resetting B’s TCP and dropping such attempts
is correct.

The connection is legitimately unsynchronized, how-

ever, while it is still first being established. RTCP thus
prevents normal handling of errors in connection setup,
such as the arrival of old duplicate SYN packets from
B’s TCP. As long as the new version of A recovers suf-
ficiently quickly, dropping the RST packets will have no
effect on the correctness of the protocol, since TCP is de-
signed to handle packet loss. Obviously, the behavior of
hiding A’s death assumes that A will indeed eventually
recover—if it is permanently dead, it must be cleaned up

at some point in the manner described in[subsection 2.

2.4.2 Spurious FINs

Depending on how A crashes, its TCP might send a FIN
before A is done sending its data. Specifically, when
a program terminates, the operating system closes all
its file descriptors; on Linux, all its sockets are implic-
itly closed. Thus, the TCP, which resides in the kernel
and survives any program’s death, finishes retransmit-
ting any outstanding data and tries to cleanly close the
connection by sending a FIN.

RTCP requires a way of distinguishing between le-
gitimate FIN packets and those that are spuriously in-
jected by the TCP endpoint during recovery. To this
end, RTCP has a side-channel command whereby A can
share the needed information. By default, RTCP will
assume any FIN from A’s TCP is spurious. A sends
RTCP_SHUTDOWN when it is ready to close the connec-
tion; upon receiving it, RTCP stops checkpointing ac-
knowledgments and expects a FIN. In an earlier version
of the RTCP system, we believed that it would be neces-
sary to include an argument for the RTCP_SHUTDOWN
command, specifying the sequence number of the per-
mitted FIN. As it turns out, the extra information is un-
necessary. Although the TCP might try to close a socket
before A is ready, it first finishes sending enqueued data.
Thus, as long as A’s waits for its last send to succeed
before sending the RTCP_SHUTDOWN, no issue arises.
If the TCP itself crashes, the enqueued data might not be
completely sent, requiring A to recover, but there will
be no spurious FIN. Should A send RTCP_SHUTDOWN
and then need to recover, RTCP, as part of the recovery,
automatically returns to its default behavior before the
RTCP_SHUTDOWN, in order to prevent a race condition
should A crash again immediately before re-enqueueing
its final output. When it is ready, A sends a fresh
RTCP_SHUTDOWN.

When RTCP detects a spurious FIN, it could drop it,
as though it were a RST (the problem is the same). How-
ever, that leaves A’s TCP hanging in the state in which
it waits for its FIN to be answered (FIN-WAIT-1), which
ties up the connection for a timeout of minutes, dur-
ing which time A cannot recover the hung TCP session.
RTCP could instead rewrite the FIN into its own answer,
letting A’s TCP advance to FIN-WAIT-2, or even spoof

a FIN from B’s TCP on top of that, taking it all the way
to TIME-WAIT. However, even in the latter case, there
is a timeout during which time the connection cannot be
recovered. The SO_REUSEADDR socket option, where
available, permits rebinding the connection while it is
still in TIME-WAIT, but a better approach would be to
remove the connection completely. Fortunately, there is
a way to do just that: RTCP rewrites the spurious FIN
into a RST that causes A’s TCP to abort the connection
immediately.

2.5 Cleaning up

After a connection closes, the TCP stack retains its in-
formation for a timeout of twice the maximum time a
packet might spend in the network, in the TIME-WAIT
state. After that timeout, the TCP stack assumes it is safe
to forget the connection. However, for simplicity RTCP
is designed as a purely reactive packet filter and has no
built-in notion of time. As a result, although RTCP can
detect when FINs have been sent both ways, it cannot
implement TIME-WAIT.

Rather than introducing a notion of elapsed time, we
solve this by adding a more general RTCP_CLEAR side
channel command, which causes RTCP to zero the con-
nection state immediately. The explicit command en-
ables applications or an administrator to choose when
it is safe to forget connections. By deleting the state
for a connection in progress, it also provides a means to
quickly and remotely simulate RTCP’s failure. The ap-
plication A should not sent RTCP_CLEAR until it is sure
that no more packets will be sent, or RTCP will break
the already-dead connection and try to recover.

In the RTCP implementation, which will be discussed
at length in[section 3] connection state is held in a lookup
table by a packet filtering program, but actually manip-
ulated in a portable RTCP library; the RTCP_CLEAR
command causes the library to clear the state, but when
does the filter program know it is safe to remove the state
from its table? One choice is for the program to under-
stand enough of RTCP to react to RTCP_CLEAR as well.
Furthermore, because RTCP can recover from its own
failure, even on a per-connection basis, the program al-
ways has the option to delete any connection state at any
time, perhaps after an inactivity timeout or eviction from
a constant-sized set of connection states. If it later turns
out that the connection is still needed, RTCP will auto-
matically recover that state when it sees traffic on the
connection again.

2.6 Options

The TCP header size is 40 bytes, and the maximum data
offset is 60 bytes; the difference is to accommodate up to
20 bytes of options. TCP implementations that conform
to RFC 793 must support three such options: Maximum

Segment Size, sent on SYN packets to enable endpoints
to avoid fragmentation; No-Operation, a one-byte op-
tion that can be used for padding; and End of Option
List, a one-byte option that may be used to indicate the
end of the options if that would not coincide with the
end of the header. RFC 1323 was the first to expand the
possible options, with Window Scaling and Timestamps.
The authors noted that the only previous meaningful op-
tion, Maximum Segment Size, could only appear in a
SYN packet, and worried that buggy TCP implementa-
tions might erroneously fail to ignore unknown options
on non-SYN packets. To address this concern, they es-
tablished the continuing practice of negotiating TCP op-
tions in the handshake, thereafter using only those sup-
ported by the other side. Other RFCs later defined fur-
ther options, notably including Selective Acknowledg-
ment and MDS5 Signatures.

The current implementation of RTCP suppresses
unrecognized options by overwriting them with No-
Operations. Due to the practice established by RFC
1323, by doing so on SYN packets, correct TCP imple-
mentations will not give RTCP any unwanted options to
suppress on future packets. Currently, the supported op-
tions include those required by RFC 793 as well as those
proposed in RFC 1323; it is worth describing some of
the pitfalls and possibilities that other options will raise
as they are supported as well, and mentioning some as-
pects of lower-level IP options.

2.6.1 Selective Acknowledgments

Selective Acknowledgments enable a TCP to acknowl-
edge data that it receives out of order or with gaps.
Advancing the cumulative acknowledgment in the ACK
field to cover the received packet would erroneously in-
clude the gaps. A consequence is that the remote peer
of an RTCP connection might wastefully retransmit data
that hasn’t really been lost.

At first glance, Selective Acknowledgments should
wreak havoc on RTCP’s checkpointed acknowledg-
ments. However, according to Section 3 of RFC 2018:

The SACK option is advisory, in that, while it
notifies the data sender that the data receiver
has received the indicated packet, the data re-
ceiver is permitted to later discard data which
have been reported in a SACK option.

Thus, both ends are free to acknowledge what they
will, and failing to recover such data will not impact cor-
rectness. RTCP’s only involvement is to apply A to the
selective as well as cumulative acknowledgments of B’s
TCP.

Not only do Selective Acknowledgments pose no
problem, they can provide a way to safely and imme-

diately notify B’s TCP of what A’s TCP has buffered,
before A’s checkpointed acknowledgments catch up.

2.6.2 MDS Signatures

The MDS5 Signature option includes an MD5 checksum
of the packet, with the same pseudo-header and so forth
as for the standard TCP checksum, appended with a
connection-specific password. Thus, it functions as a
sort of HMAC, or symmetric signature. The option was
proposed to protect BGP sessions, and we believe that
BGP is still the main (perhaps only) application to use
this option. To spoof or modify packets on a connec-
tion with MDS5 signatures, an attacker would not only
have to guess the relevant sequence numbers, but also
the connection’s password, which is configured out-of-
band and never transmitted. However, because BGP is a
primary target of our work, adding MD5 Signature sup-
port to RTCP is part of ongoing work.

Doing so is not as simple as one might wish. RTCP is
a man-in-the-middle that just happens to be beneficial;
the MD5 Signature option is designed to thwart men-
in-the-middle attacks. Clearly, RTCP cannot protect a
connection with MD5 Signatures without knowing the
password. The solution is straightforward: we clearly
need a side-channel command whereby the application
can give RTCP the session password.

Transmitting a password to RTCP over the side chan-
nel violates the normal requirement that session pass-
words never be transmitted; however, we note that a ma-
licious intruder with access to the side channel would
also be able to query the current sequence numbers, ar-
bitrarily change the ACK checkpoint, and kill the con-
nection without possibility of recovery. For this reason,
we have concluded that the path between applications
and RTCP must be a secured one, and that RTCP should
be limited to receive command packets only from trust-
worthy sources. There are many ways to provide these
guarantees; the simplest option is to run RTCP on the
same node that runs A’s TCP, since the security mate-
rial is physically on that node. A more careful study
of security is beyond the scope of the present paper. In
that case, of course, processor crashes would always kill
RTCP as well as the application and its TCP, but the sys-
tem can recover from simultaneous RTCP and applica-
tion failure, and colocating A and RTCP could have per-
formance benefits as well.

2.6.3 1P options

The IP header also supports options, including No-
Operation and End of Options List (as for TCP), as well
as timestamps, various kinds of source routing, and a
means of specifying security compartments. Many IP
options, notably source routing, are poorly supported
and rarely used; the current RTCP implementation nei-

ther uses nor bothers to suppress them.

IPsec adds security to the IP layer; although imple-
mented as protocols layered between IP and (in this
case) TCP, it can also be seen as particularly heavy-
weight IP options. Fundamentally, RTCP could sup-
port IPsec in the same manner as MD5 Signatures, by
adding a side-channel command whereby the endpoint
could share the needed secrets with the RTCP filter.
However, support for IPsec is significantly more com-
plex than storing a password and recomputing an MD5
checksum, and although we do believe the problem to
be solvable, we have no near-term plans to support this
protocol feature.

One work-around would be to use IPsec in its Tunnel
Mode, in which whole packets are encapsulated within
the security layer. Tunnel Mode is widely used for such
purposes as establishing Virtual Private Networks, and
as long as RTCP sees the packets before or after the tun-
nel, there is no need for it to be aware that the encapsu-
lated protocol is using IPsec.

2.7 Recovering RTCP

Should RTCP itself crash, it is able to recover its state
from the endpoints, preventing it from becoming a sin-
gle point of failure. Any packet from B’s TCP, for exam-
ple, reveals its latest sequence number and acknowledg-
ment. Some of RTCP’s state is already kept by A; for ex-
ample, the next RTCP _ACKNOWLEDGE command RTCP
receives from A implicitly recovers the ACK check-
point. However, RTCP must be able to ensure that A
will send such a command in a timely manner, because it
cannot safely forward any packet from A’s TCP without
knowing if it acknowledges uncheckpointed data. Fur-
thermore, some of RTCP’s state, such as A, is internal
and cannot be recovered directly from A.

All of the state RTCP needs to recover a connection,
on the other hand, is implicitly recomputed during the
recovery of A. So, if RTCP finds itself in a situation in
which it cannot proceed—for example, when handling
a packet from A but lacking the ACK checkpoint—it
forces A to recover by rewriting the offending packet
into a RST for A’s TCP. A will receive an ECONNRESET
(“Connection reset by peer”) error or something similar,
revealing that it must recover to continue.

As part of its recovery, the application will first send
its latest RTCP_ACKNOWLEDGMENT, bringing RTCP up
to date on the checkpointed acknowledgment. Then
it will recover the connection as usual, which enables
RTCP to recompute the offset A. Once it is reconnected,
the application learns where to resume from, with its
usual RTCP_TELL, and continues.

Indeed, that mechanism is the reason the system can
handle simultaneous failure of RTCP and the applica-
tion; in fact, it is simpler in that case than if just RTCP

were to fail, because there is no need to kill the appli-
cation to trigger its recovery. The essential technique
is to transform RTCP failure into application failure, al-
lowing us to leverage the presumed application replica-
tion mechanism as a way to avoid state replication within
RTCP itself.

3 Implementation

RTCP addresses five main concerns, some of which re-
quire state. Where state is required, the mechanism must
work correctly when the connection is first established,
while it is being established, when A has crashed, when
A recovers, and when RTCP has crashed. When RTCP
looks up the connection state for a particular packet it is
processing and finds none, it creates a fresh state filled
with default values: false for flags and zero for words.
RTCP’s interpretation of the default values accommo-
dates the case where the state is new because the con-
nection is new, as well as the case where the state is new
because RTCP has crashed and restarted. The five con-
cerns break down as follows:

Suppress options. Scan incoming and outgoing op-
tion lists to suppress unrecognized options. (No state
is necessary.)

Suppress spurious reset.
state is necessary.)

Drop outgoing RSTs. (No

Reset spurious close. Keep a flag fin_allowed. On
an RTCP_SHUTDOWN or RTCP_SHUTDOWN_WRITING,
set fin_allowed. On an outgoing FIN, if —fin_allowed,
rewrite the packet into an incoming RST.

Resynchronize. Keep two words, A and ackB, and
a flag recoverable, which indicates whether ackB is
meaningful. On an incoming ACK, store it in ackB and
set recoverable. On an outgoing SYN with no ACK
(A’s first packet when it is a client): If recoverable,
let A «— seq + 1 — ackB, and rewrite the packet into
its own handshake response; if —recoverable, forward
the packet unchanged, to permit initial connection or
elicit an empty packet from B (to reveal ackB and set
recoverable for the retransmitted SYN, in case of recov-
ery). Add A to all incoming acknowledgments and sub-
tract it from all outgoing sequence numbers.

Checkpoint outgoing acknowledgment. Keep a
word, ackA, storing the checkpointed acknowledgment,
a flag ack_allowed, which indicates whether ackA is
meaningful, and a flag ack_everything, which indicates
whether to acknowledge everything, regardless of the
checkpointed acknowledgment. On an incoming SYN,
let ackA <« seq + 1 and set ack_allowed. On an
RTCP_ACKNOWLEDGE, store the command’s argument
in ackA and set ack_allowed. On RTCP_SHUTDOWN or
RTCP_SHUTDOWN_READING, set ack_everything. On

an outgoing ACK: if —ack_allowed, rewrite the packet
into an incoming RST; otherwise, if —~ack_everything,
ack — ackA;

3.1 Algorithms

Reorganizing the separate concerns into the algorithms
used to process packets will better elucidate RTCP’s im-
plementation:

Incoming. Process an incoming packet from B, up-
dating the connection’s state within RTCP, rewriting the
packet as needed, and forwarding or dropping it.

I1. [Handle options.] Scan incoming and outgoing op-
tion lists to suppress unrecognized options by over-
writing them with No-Operation bytes.

I2. [Initialize checkpointed acknowledgments.] If the
SYN flag is set, that is, if SEQ is B’s initial se-
quence number, let ackA «— SEQ + 1, and set
ack_allowed.

I2. [Handle acknowledgment.] If the ACK flag is set,
let ackB «+ ACK and ACK <« ACK + A, and set
recoverable.

I4. [Forward packet.] Update the checksum and for-
ward the packet.

Outgoing. Process an outgoing packet from A, updat-
ing the connection’s state within RTCP, rewriting the
packet as needed, and forwarding or dropping it.

O1. [Suppress resets.] If the RST flag is set, drop the
packet.

02. [Handle options.] Scan incoming and outgoing op-
tion lists to suppress unrecognized options by over-
writing them with No-Operation bytes.

03. [Attempting recovery?] If the ACK flag is set, skip
to step O6. (The ACK flag is set on every packet
but the client’s SYN, so its absence indicates A is
attempting to connect.)

04. [Recovery possible?] If —recoverable, either A is
connecting for the first time, or RTCP has lost the
connection state: Forward the packet unchanged.
(In the former case, B will answer with a SYN-
ACK; in the latter, B will answer with an empty
ACK, which will enable recovery when A’s TCP
retransmits the SYN.)

05. [Recover.] Recompute A. Unset fin_allowed.
Rewrite the packet into the SYN-ACK response A’s
TCP expects, and forward it.

06. [Reset?] If neither ack_allowed nor
ack_everything is set, RTCP has lost the connec-
tion state and is unable to correctly update the
ACK. If the FIN flag is set, but not fin_allowed,
the FIN is spurious. In either case, rewrite the
packet into an incoming RST and forward it.

07 [Checkpoint ACK.] If -—ack_everything, let
ACK « ackA.

08. [Fix SEQ.] SEQ «— SEQ — A.
09. [Forward packet.] Update the checksum and for-
ward the packet.

Command. Process a UDP command packet, updat-
ing the connection’s state within RTCP, rewriting the
packet as needed, and forwarding or dropping it.

C1. [Tell.] On RTCP_TELL, fill in the command with
ackA and ackB.

C2. [Acknowledge.] On RTCP_ACKNOWLEDGE, copy
ackA from the command and set ack_allowed.
Rewrite the packet into an empty outgoing ACK
and forward it.

C3. [Shutdown writing.] On RTCP_SHUTDOWN or
RTCP_SHUTDOWN_WRITING, set fin_allowed.

C4. [Shutdown reading.] On RTCP_SHUTDOWN
or RTCP_SHUTDOWN_READING, set
ack_everything.

CS5. [Clear.] On RTCP_CLEAR, unset recoverable,
fin_allowed, ack_allowed, and ack _everything.

C6. [Respond.] Change the command type to indicate
a response, swap the source and destination, update
the checksum, and forward the packet. B

3.2 Packet Processing

Because RTCP is a packet processing filter, it requires
a robust mechanism to capture packets from the wire,
with the capacity to rewrite or drop them. Once it has
the packets, RTCP must separate connection packets
from its own commands by protocol, and distinguish
incoming and outgoing packets by whether the desti-
nation or source is fault-tolerant. However, there is no
best, portable way to filter packets, and identifying fault-
tolerant applications is not a matter of technology but of
policy. Therefore, a deployment of RTCP consists of
two components: Portable logic and specialized packet
filtering.

The logic of processing packets is encapsulated in the
librtcp library, which exposes an interface of just
three functions, one for each of the packet processing
algorithms:

int rtcp_incoming (struct rtcp_connection ~*,
struct ip *, struct tcphdr *)
int rtcp_outgoing (struct rtcp_connection »,
struct ip *, struct tcphdr *)
int rtcp_command (struct rtcp_connection x,
struct ip *, struct udphdr *,
struct rtcp_command *)

For example, when the packet filtering program cap-
tures and identifies a TCP packet destined for a fault-
tolerant application, it looks up or creates the relevant
connection state and passes itto rtcp_incoming with
pointers to the various parts of the packet in memory.

The function updates the connection state and rewrites
the packet, as necessary, in place, indicating by the re-
turn value whether the filter should forward or drop
it. The three functions have identical calling conven-
tions, except that in the case of rtcp_command, the
packet is UDP, and the payload represents a struct
rtcp-command.

The connection states are maintained in the calling
program because it might know a priori that it will
protect a particular connection, avoiding the need for
lookup entirely, or a fixed set of connections, enabling
a perfect hash function or just an array indexed by port
number. If full generality is required, a deployment
could employ a hash table on addresses and ports, such
as one would find in a TCP stack.

For further optimization, if RTCP makes so many
changes to a packet that incrementally updating the
checksum would be more burdensome than recomput-
ing it from scratch, rather than doing the recomputation,
it sets the checksum field to zero. The packet filtering
program can then recompute the checksum or take the
opportunity to leverage checksum offloading if it is sup-
ported by the hardware.

RTCP is reactive, working with the packets that flow
through it. It has no sense of time, and never copies
packets or generates its own. To avoid issues of mem-
ory management, RTCP never grows packets, although it
might shrink them; RTCP command packets have built-
in padding to make that possible.

The 1ibrtcp code is about two hundred lines of C.
Although it depends at compile time on standard headers
that define various types, notably packet header struc-
tures, it has no runtime dependencies, not even the stan-
dard C library, and it should be possible to compile into
a kernel.

We have implemented two packet filtering programs
to drive 1ibrtcp. The first is based on the QUEUE
target of the Linux kernel’s Netfilter firewall; in addition
to obvious targets such as ACCEPT and DROP, Net-
filter can send packets to a queue that is accessible to
userspace programs. The rtcp—-netfilter program
binds to the queue and filters the packets the kernel gives
it; it identifies fault-tolerant applications according to
port ranges specified as command-line arguments.

The second packet filtering program, the one evalu-
ated in this paper, is based on NetSlices [4], a kernel
modification that enables RTCP to take advantage of
modern multiqueue NICs and optimized communication
of packets from the device to userspace. Both programs
are written in under three hundred lines of C, and are es-
sentially glue code between the filtering mechanism and
the portable RTCP logic, with a small amount of deploy-
ment logic to identify fault-tolerant applications.

It might be desirable to also have a more portable

packet filtering program; the most portable interface to
packet capture is PCAP, which is supported on nearly all
common operating systems. However, although PCAP
provides a portable interface to capture and injection, it
provides no means to drop packets or hold them to be
modified before they are forwarded, so it is not directly
useful for RTCP. Combined with clever configuration of
the host-specific firewall, it might be possible to imple-
ment an RTCP packet filter on PCAP, but there is not yet
a need for the increased portability in the filter program.

4 Writing a recoverable application

A normal socket application first acquires a file handle
representing a socket with the socket function, then,
if it is a client, connects it to a server with connect,
which implicitly binds it to a local ephemeral port; if it
is a server, it explicitly binds the socket with bind, does
a passive open with 1isten, and loops on accept,
accepting active opens from clients. Once the connec-
tion is established, client and server sockets are indis-
tinguishable; both sides send and recv data according
to whatever application protocol is in use, until finished,
and clean up with shutdown or close.

As soon as a recoverable connection is established—
immediately after connect or accept—the appli-
cation initializes an RTCP command packet, using
getsockname and getpeername to fill in the con-
nection’s endpoints. Before sending any data, it sets
the command type to RTCP_TELL, sends it to RTCP’s
UDP address, and waits for the response with the lat-
est acknowledgments in both directions, which, just after
handshaking, reveals the initial sequence numbers. The
command packet can be reused just by setting the com-
mand type to RTCP_ACKNOWLEDGE before proceeding;
the checkpointed acknowledgment is already initialized
thanks to the RTCP_TELL. Whenever the application
saves or processed its input, it adds the number of bytes
consumed to the checkpointed acknowledgment in the
command and sends it to RTCP. Finally, just before call-
ing close, the application sets the command type to
RTCP_SHUTDOWN and sends the command to RTCP.

To recover, the application needs only a saved
copy of its checkpointed acknowledgment, and B’s
acknowledgment of its initial sequence number from
RTCP_TELL. Before reconnecting, the application sends
the RTCP_ACKNOWLEDGE command, in order to re-
cover the checkpointed acknowledgment if RTCP has
restarted. Then, it reconnects as a normal client (even if
it was originally the server). Before calling connect, it
explicitly binds to its original port number, rather than
letting the system allocate it an ephemeral port and thus a
brand new connection. Once connected, the application
sends a new RTCP_TELL, in order to compare the latest
acknowledgment from B’s TCP with its first and deter-

mine how many bytes have been successfully sent (mod-
ulo 232; if more than 232 bytes might be sent, the appli-
cation should also preserve how many bytes it believes
it has sent, to disambiguate). The application can then
resume sending its output from that point, and expect its
input to resume from its checkpointed acknowledgment.
When finished, it sends RTCP_SHUTDOWN and closes
the socket as normal.

Like the shutdown socket function, with its
separate SHUT_RD and SHUT._WR, RTCP has com-
mands enabling the two halves of a connection to
be closed separately: RTCP_SHUTDOWN_READING
and RTCP_SHUTDOWN_WRITING. The former indi-
cates that the application does not expect to read
any more data, and tells RTCP to stop checkpoint-
ing acknowledgments (permitting A’s TCP to acknowl-
edge B’s FIN). The latter indicates that the appli-
cation does not expect to write any more data, and
tells RTCP that its future FINs will be genuine. The
RTCP_SHUTDOWN command is actually just a shortcut
for accomplishing both commands simultaneously, anal-
ogous to SHUT_RDWR or close.

The changes to a fault-tolerant application are slight.
For our evaluation, we modified netperf to support
RTCP—the original, of course, was not fault-tolerant,
and we did not add application-level fault tolerance.
However, updating one of the tests to use the appropriate
RTCP commands, including checkpointed acknowledg-
ments, required about 13 lines of code plus error han-
dling.

5 Evaluation

We evaluated the NetSlices implementation of RTCP,
focusing on overhead with respect to unprotected TCP,
scalability, and speed of connection recovery. We in-
terposed RTCP on a 10 Gigabit Ethernet link, on a ma-
chine with a Myricom Network Interface Card and an 8-
core (16-hyperthread) Intel Nehalem CPU. The NIC we
used has the ability to map packets to virtualized queues
based on port numbers, enabling us to pin connections
to particular cores, achieving scalability by running an
RTCP on each core to share the load. The actual path
from NIC to RTCP is NetSlices. The nodes running
applications and peers were less powerful, with only 1
Gigabit Ethernet cards, so several on each side were re-
quired to saturate the 10 Gigabit link. Ping latency from
one of the A nodes to RTCP was about 119 microsec-
onds, and ping latency through to one of the B nodes
was about 299 microseconds.

We used netperf, a common network benchmark-
ing tool, to measure three configurations: unprotected
TCP, RTCP, and “dummy” RTCP. The dummy RTCP
does all of the NetSlices filtering of packets, but never
actually calls in to librtcp; thus, it enables us to

10000

8000
7000 |
6000 |
5000 |

Throughput (Mbps)

3000
2000
1000

tcp-baseline rtcp-dummy rtcp

Figure 4: TCP_STREAM throughput. RTCP achieves
97.71% of the throughput of unprotected TCP saturating a 10
Gigabit Ethernet link.

separate overhead due to filtering from overhead due to
RTCP processing. Under RTCP, netperf required mi-
nor additions to send appropriate RTCP control pack-
ets. We subjected the various configurations to three
netperf benchmarks: TCP_STREAM, which mea-
sures throughput from A to B, TCP_MAERTS (“stream”
spelled backwards), which measures throughput from B
to A, and TCP_RR (“Request/Response”), which mea-
sures how quickly A and B can bounce a 1-byte message
back and forth.

The results of the TCP_.STREAM test are shown in
Due to overheads at all layers from symbol
encoding to TCP headers, it is not possible to achieve
the full 10 Gigabits in application throughput; however,
by carefully choosing TCP window parameters, unpro-
tected TCP was able to saturate the link. The dummy
RTCP achieved 97.77% of the throughput of unprotected
TCP, whereas full RTCP achieved 97.71%. Thus, of
the overhead introduced, most is due to packet filtering;
even with packet filtering and full protection, RTCP is
able to operate at line rate on a 10 Gigabit link.

Because of RTCP’s excellent scalability in packet pro-
cessing, it is not relevant to measure its scalability in
terms of the number of protected connections that ac-
tively send data—in the absence of failure. The connec-
tions can not send faster than the link, so the only over-
head related to their number is the cost of RTCP looking
up state for each packet. In the experimental deploy-
ment, RTCP uses an array indexed by port number for
quick, constant-time lookup. If a different deployment
were to need a non-constant-time data structure for con-
nection state, its evaluation should consider the overhead
of such a data structure.

In the presence of failure, however, especially RTCP
failure, the number of connections is quite relevant. Be-
cause RTCP failure induces failure in all the connections

10000

8000 r
7000 |
6000 |
5000 |

Throughput (Mbps)

3000
2000
1000

tcp-baseline rtcp-dummy rtcp

Figure 5: TCP_MAERTS throughput. With B sending data
to A, thus stressing checkpointed acknowledgments, RTCP
achieves 71.4% of the throughput of unprotected TCP. Careful
choice of window size proves crucial in this case, because the
effect of checkpointed acknowledgments is to artificially in-
crease B’s perceived round-trip time and thus the bandwidth—
delay product of the connection.

flowing through it, the extra control traffic generated by
all recovering at once might be very different from their
usual behavior; more precisely characterizing scalability
in simultaneous failures is left for future work, because
it is not immediately relevant to the relatively few appli-
cations RTCP will protect within the router project.

The TCP_STREAM test does not exercise check-
pointed acknowledgments at all, because B never sends
data back to A to be acknowledged. On the other hand,
the TCP_MAERTS test—although prima facie identical
to TCP_STREAM save for direction—primarily demon-
strates the throughput impact of checkpointed acknowl-
edgments. The results are shown in RTCP
achieves 71.4% of the throughput of unprotected TCP.
Our first numbers for this metric were quite bad, more
like 20%; the reason for the discrepancy provides a
key insight into the impact of checkpointed acknowl-
edgments on throughput. Specifically, it artificially in-
creases the round-trip-time B’s TCP computes based
on the acknowledgments, and thus the bandwidth—delay
product of the connection from its perspective. Thus,
correctly choosing a large enough TCP window is cru-
cial. Additionally, changing the priority of the RTCP
process on the filtering node dramatically increased per-
formance, showing that even operating system schedul-
ing enters the critical path in getting acknowledgments
out. The longer it takes A to checkpoint its data, the
more the connection appears (to B’s TCP) to be high-
bandwidth but high-latency.

Another performance impact of checkpointed ac-
knowledgments is the bandwidth spent on sending the
control messages themselves. We note that some prior

10000
9000
8000
7000 |
6000 |
5000 |

Transactions/ second

3000
2000
1000

tcp-baseline rtcp-dummy rtcp

Figure 6: TCP_RR application round-trips per sec-
ond. With A and B bouncing a 1-byte message back and
forth, which both stresses checkpointed acknowledgment and
strips away any pipelining to reveal all of RTCP’s latency
overhead—that is to say, in the most challenging common case
test—RTCP achieves 61.9% of the application-level round
trips per second of unprotected TCP.

work [13]] specifically explored sending control infor-
mation over dedicated links at various rates, with the re-
sult being greatly improved throughput. Another way to
eliminate that cost would be to colocate RTCP and the
fault-tolerant applications running on a particular node,
as mentioned previously for security; thus, control mes-
sages could use the fast loopback link, avoiding conges-
tion on the real link and also reducing latency in com-
munication on the side channel.

When testing raw throughput, TCP can take advan-
tage of large windows to pipeline a great deal of data
and hide the actual latency of the link. The TCP_RR
Request/Response test, on the other hand, ping-pongs
a 1-byte message back and forth from A to B, and
thus completely eliminates the effect of pipelining to re-
veal latency overheads. Additionally, unlike the other
netperf tests we performed, TCP_RR is bidirectional,
with both incoming and outgoing data; checkpointed
acknowledgments are once again relevant. The result
of TCP_RR, unlike the throughput measurements, is
in operations (Request/Response application-level round
trips) per second, as shown in The Re-
quest/Response test stresses RTCP the most of any com-
mon case test, because the alternating message elimi-
nates TCP’s usual advantage of pipelining the data in
flight, stripping the result down to pure latency, and be-
cause half of the messages are subject to delayed ac-
knowledgments. Nonetheless, RTCP achieves 61.9% of
unprotected TCP’s application-level round-trips per sec-
ond.

To get a more detailed view of RTCP’s performance
and latency, we microbenchmarked the CPU time—

13
12
a1t
410
o
Q 9t
H
g 7
£
o 6r
E 5
24l
G 3
2 [
1 I
0 o / /¢ & X ,
Yy, o, o, Y %, U,
", 7 [%
//79 //79 £4% h//%@ %/7
Figure 7: CPU microbenchmark. Microbenchmarking

RTCP processing various kinds of packets, without any net-
work or copying overhead, shows the cost of packet process-
ing; in terms of CPU time, one instance of RTCP can handle
about thirty million data packets per second.

independent of the network and filtering—that RTCP
spends processing various kinds of packets. The mi-
crobenchmark program constructs the packets in mem-
ory, then calls the relevant 1ibrtcp processing func-
tion in a tight loop a large number of times, while mea-
suring userspace CPU time (RTCP makes no library
calls, let alone system calls, so system CPU time is al-
ways zero). All of the packets considered are idem-
potent, and repeated processing follows the same code
path each time. In order to ensure that, even with rewrit-
ing, RTCP actually processes the same input each time
around the loop, the microbenchmark makes a fresh
copy each time; the time spent copying was microbench-
marked separately and subtracted out of the results. As
a consequence of that and the cache-friendly behavior
of processing the same buffer over and over, the mi-
crobenchmarks show an ideal picture of RTCP’s perfor-
mance from when it gets a packet in memory until it is
ready to be dropped or forwarded.

The microbenchmark covers six kinds of packets:

e An empty incoming acknowledgment packet.

e An empty outgoing acknowledgment packet.

e A recovery packet, that is, an outgoing SYN on an
already-synchronized connection.

e An RTCP_TELL command.

e An RTCP_ACKNOWLEDGE command.

e An RTCP_SHUTDOWN command.

The time spent on each is shown in [Figure 7} all
are on the order of nanoseconds. More processing is
done on actual TCP packets than on control UDP pack-
ets. Within each, the most expensive kind of packet—
recovery packets for TCP, and RTCP_ACKNOWLEDGE
packets for UDP—are the ones that require the most

rewriting; recovery SYN packets are rewritten into an-
swering SYN-ACKS, and RTCP_ACKNOWLEDGE pack-
ets are rewritten into TCP acknowledgments. Outgoing
TCP packets require slightly more processing than in-
coming, because masking failure and enabling recovery
are all aspects of processing A’s output.

If we assume that failure is rare, the most important
feature of RTCP is its unobtrusiveness in the common
case, as measured above. However, if failure never oc-
curred, RTCP would not need to exist; it is also crucial
that when an application fails, it can pick up its connec-
tions quickly. Therefore, we concluded our experimen-
tation with an application-level recovery benchmark. We
ignore benchmarking recovery of the RTCP filter itself,
because in the current implementation that cost is dom-
inated by A waiting to retransmit its unacknowledged
SYN, which has nothing to do with RTCP’s perfor-
mance. The connection recovery benchmark establishes
a connection, then repeatedly “crashes” by simply call-
ing close and letting RTCP turn the unexpected FIN
into a RST. Then it recovers the connection immediately,
going through all of the usual steps, including sending
an RTCP_TELL and waiting for the response. Proceed-
ing in that manner, the benchmark was able to repeatedly
recover in an average of 378 microseconds per cycle, or
about three round-trips (FIN into RST to fail, SYN into
SYN-ACK to recover, and RTCP_TELL and response to
learn new state) to RTCP.

6 Related Work and Discussion

A variety of projects have addressed the problem of a
service recovering from a failure transparent to its TCP-
based clients. One approach is to introduce a modified
TCP socket library for clients [9]. Such a library could
automatically set up a new connection to a new server
in case the connection to the current one fails. However,
modifying the clients is not usually an option, and would
severely complicate its deployment.

Another possibility is to replicate the server-side TCP
state onto multiple machines. The state of the TCP con-
nection is replicated along with the state of the appli-
cation. For example, HydraNet-FT [11l], HotSwap [2],
and ST-TCP (3, 6] use a primary-backup replication ap-
proach. Disadvantages of this approach include the high
overhead of replication (incoming packets have to be de-
livered to all replicas) and, usually, the inconvenience of
having to modify the server-side TCP stack in order to
access its state.

An approach that leaves the TCP stack unchanged
is to wrap the server-side TCP stack, recording and
possibly modifying its incoming and outgoing events.
Failover TCP [3]] and FT-TCP [1} [12} [13]] use this tech-
nique. Similar to our RTCP approach, acknowledgments
are delayed until the data is safely handled and sequence

numbers in the packets to and from a restarted TCP stack
have to be rewritten. This approach suffers from high
overhead due to the process of recording events, and al-
though it leaves the TCP stack unchanged, it does re-
quire kernel modifications in the server operating sys-
tems.

To avoid such kernel modifications, yet another ap-
proach is to use a proxy server between the client and
the server replicas [7]. The client sets up a connection
to a proxy server, and the proxy server handles failing
over from a primary server to a backup server as nec-
essary. This approach has a single point of failure: if
the proxy fails, the TCP connection to the client is inter-
rupted. A solution is to replicate the proxy [8], but this
suffers from many of the same disadvantages of TCP
stack replication.

Our approach also uses a proxy technique, but our in-
sight is that there is no need to replicate its state—all its
state is “soft” and can be rebuilt upon recovery by sim-
ulating a server failure and recovery. Its use of check-
pointed acknowledgment makes it unnecessary to log
data, and consequently the RTCP state per connection
is very small and the solution is highly scalable.

The decision to eliminate replication represents a
tradeoff: Replication introduces additional network hops
and processing costs in the common case, but causing
every active connection to simultaneously fail introduces
more processing and delay to recover in the case of fail-
ure. Thus, the choice depends on how often RTCP is
expected to fail and the maximum delay that can be tol-
erated.

There is a third way, however, which is planned for fu-
ture development. The reason RTCP failure induces con-
nection failures is to reduce the problem to connection
recovery, which we have already solved. Instead, the
side channel could be extended to enable RTCP to make
asynchronous requests back to the applications, indicat-
ing when recovery is needed, with explicit responses to
rebuild the state without inducing failure. Adding that
ability would complicate RTCP’s configuration, in the
form of 1ibrtcp’s API and its assumptions about the
packet filtering driver, but would remove the need for
inducing failure and enable faster RTCP recovery.

Finally, one of the costs of recovering connections,
when RTCP recovers and induces failure, is waiting for
A’s TCP to retransmit its SYN. However, B’s ACK
response to the first gives RTCP enough information
to respond immediately; rewriting it instead of waiting
for retransmission would dramatically decrease recov-
ery times without the need for a reverse side channel or
internal replication.

7 Conclusion

RTCP is a new packet filter that enables the recovery of
TCP connections that would otherwise break as the re-
sult of the failure of an endpoint, even a fault-tolerant
endpoint, due to the information hidden in the network
stack. Aimed at high availability implementations of ser-
vices such as BGP on core Internet routers, RTCP is able
to run at 97% of the throughput of unprotected TCP on
a 10 Gigabit Ethernet link, thus achieving the desired
protection with little impact on connection performance
without failure, while also enabling connection recov-
ery times on the order of 378 microseconds. Thus, the
emphasis on simplicity shows in its performance.

Making RTCP a man-in-the-middle—thereby mov-
ing TCP recovery into the network—achieves indepen-
dence from operating system and network stack sup-
port, which, in turn, significantly pares down the state
required to track a connection. Employing checkpointed
acknowledgments avoids all buffering within RTCP. Ad-
ditionally, getting applications directly involved in pro-
tecting their own connections, aside from further sim-
plifying RTCP, eliminates the need to make assumptions
about application behavior such as determinism.

In future work, we will explore TCP security features
such as the MD5 security header used as a TCP option
by BGP, and will install and benchmark RTCP on a fully
functional core Internet router; such an effort is part of
a larger endeavor to dramatically improve the reliability
of the Internet.

Availability

RTCP is free software under the New BSD License.
Source code and information are available at

http://rtcp.sourceforge.net/

References

[1] Avrvisl, L., BRESSOUD, T., EL-KHASHAB, A., MARZULLO,
K., AND ZAGORODNOV, D. Wrapping server-side TCP to
mask connection failures. In Proc. of Infocom 2001 (Anchorage,
Alaska, Apr. 2001), pp. 329-338.

[2] BURTON-KRAHN, N. HotSwap — transparent server failover for
Linux. In Proc. of USENIX LISA 02: Sixteenth Systems Admin-
istration Conference (2002).

[3] KocH, R., HORTIKAR, S., MOSER, L., AND MELLIAR-
SMITH, P. Transparent TCP connection failover. In Proc. of the
International Conference on Dependable Systems and Networks
(DSN’03) (2003), IEEE Computer Society, pp. 383-392.

[4] MARIAN, T. Operating Systems Abstractions for Software
Packet Processing in Datacenters. Phd dissertation, Cornell Uni-
versity, Department of Computer Science, August 2010.

[S] MARWAH, M., MISHRA, S., AND FETZER, C. TCP server
fault tolerance using connection migration to a backup server.
In Proc. of the International Conference on Dependable Systems
and Networks (DSN’03) (San Francisco, CA, June 2003), IEEE
Computer Society.

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

MARWAH, M., MISHRA, S., AND FETZER, C. A system
demonstration of ST-TCP. In Proc. of the 2005 IEEE Interna-
tional Conference on Dependable Systems and Networks (DSN
2005) (Yokohama, Japan, June 2005), IEEE Computer Society.
MARWAH, M., MISHRA, S., AND FETZER, C. Fault-tolerant
and scalable TCP splice and web server architecture. In Proc.
of the 25th Symposium on Reliability in Distributed Software
(SRDS’06) (2006), IEEE Computer Society, pp. 301-310.
MARWAH, M., MISHRA, S., AND FETZER, C. Enhanced server
fault-tolerance for improved user experience. In Proc. of the
International Conference on Dependable Systems and Networks
(DSN’08) (2008), IEEE Computer Society, pp. 167-176.
ORGIYAN, M., AND FETZER, C. Tapping TCP streams. In Proc.
of the International Symposium on Network Computing and Ap-
plications (NCA’01) (2001), IEEE Computer Society, pp. 278—
289.

SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-end
arguments in system design. In /CDCS (1981), IEEE Computer
Society, pp. 509-512.

SHENOY, G., SATAPATI, S. K., AND BETTATI, R. Hydranet-
ft: Network support for dependable services. In Proc. of
the International Conference on Distributed Computing Systems
(ICDCS’00) (2000), pp. 699-706.

ZAGORODNOV, D., MARZULLO, K., ALVISI, L., AND BRES-
souD, T. Engineering fault-tolerant TCP/IP servers using FT-
TCP. In Proc. of the International Conference on Depend-
able Systems and Networks (DSN’03) (Los Alamitos, CA, USA,
2003), IEEE Computer Society.

ZAGORODNOV, D., MARZULLO, K., ALVISI, L., AND BRES-
souD, T. Practical and low-overhead masking of failures of
TCP-based servers. Transactions on Computer Systems 27, 2
(2009).

http://rtcp.sourceforge.net/

	Introduction
	Design
	Reconnection
	Resynchronization
	Retransmission
	Outgoing
	Incoming

	Masking failure
	Spurious RSTs
	Spurious FINs

	Cleaning up
	Options
	Selective Acknowledgments
	MD5 Signatures
	IP options

	Recovering RTCP

	Implementation
	Algorithms
	Packet Processing

	Writing a recoverable application
	Evaluation
	Related Work and Discussion
	Conclusion

